Introducing HeliEns: A Novel Hybrid Ensemble Learning Algorithm for Early Diagnosis of Helicobacter pylori Infection

Author:

Qasem Sultan Noman12ORCID

Affiliation:

1. Computer Science Department, College of Computer and Information Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11432, Saudi Arabia

2. Computer Science Department, Faculty of Applied Science, Taiz University, Taiz 6803, Yemen

Abstract

The Gram-negative bacterium Helicobacter pylori (H. infection) infects the human stomach and is a major cause of gastritis, peptic ulcers, and gastric cancer. With over 50% of the global population affected, early and accurate diagnosis of H. infection infection is crucial for effective treatment and prevention of severe complications. Traditional diagnostic methods, such as endoscopy with biopsy, serology, urea breath tests, and stool antigen tests, are often invasive, costly, and can lack precision. Recent advancements in machine learning (ML) and quantum machine learning (QML) offer promising non-invasive alternatives capable of analyzing complex datasets to identify patterns not easily discernible by human analysis. This research aims to develop and evaluate HeliEns, a novel quantum hybrid ensemble learning algorithm designed for the early and accurate diagnosis of H. infection infection. HeliEns combines the strengths of multiple quantum machine learning models, specifically Quantum K-Nearest Neighbors (QKNN), Quantum Naive Bayes (QNB), and Quantum Logistic Regression (QLR), to enhance diagnostic accuracy and reliability. The development of HeliEns involved rigorous data preprocessing steps, including data cleaning, encoding of categorical variables, and feature scaling, to ensure the dataset’s suitability for quantum machine learning algorithms. Individual models (QKNN, QNB, and QLR) were trained and evaluated using metrics such as accuracy, precision, recall, and F1-score. The ensemble model was then constructed by integrating these quantum models using a hybrid approach that leverages their diverse strengths. The HeliEns model demonstrated superior performance compared to individual models, achieving an accuracy of 94%, precision of 97%, recall of 92%, and an F1-score of 94% in detecting H. infection infection. The quantum ensemble approach effectively mitigated the limitations of individual models, providing a robust and reliable diagnostic tool. HeliEns significantly improved diagnostic accuracy and reliability for early H. infection detection. The integration of multiple quantum ML algorithms within the HeliEns framework enhanced overall model performance. The non-invasive nature of the HeliEns model offers a cost-effective and user-friendly alternative to traditional diagnostic methods. This research underscores the transformative potential of quantum machine learning in healthcare, particularly in enhancing diagnostic efficiency and patient outcomes. HeliEns represents a significant advancement in the early diagnosis of H. infection infection, leveraging quantum machine learning to provide a non-invasive, accurate, and reliable diagnostic tool. This research highlights the importance of QML-driven solutions in healthcare and sets the stage for future research to further refine and validate the HeliEns model in real-world clinical settings.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3