Abstract
Non-Zero crossing point detection in a sinusoidal signal is essential in case of various power system and power electronics applications like power system protection and power converters controller design. In this paper 96 data sets are created from a distorted sinusoidal signal based on MATLAB simulation. Distorted sinusoidal signals are generated in MATLAB with various noise and harmonic levels. In this paper, logistic regression model is used to predict the non-zero crossing point in a distorted signal based on input features like slope, intercept, correlation and RMSE. Logistic regression model is trained and tested in Google Colab environment. As per simulation results, it is observed that logistic regression model is able to predict all non-zero-crossing point in a distorted signal.
Subject
Computer Networks and Communications,Human-Computer Interaction
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献