Neural Net-Based Approach to EEG Signal Acquisition and Classification in BCI Applications

Author:

Chenane Kathia,Touati Youcef,Boubchir LarbiORCID,Daachi Boubaker

Abstract

The following contribution describes a neural net-based, noninvasive methodology for electroencephalographic (EEG) signal classification. The application concerns a brain–computer interface (BCI) allowing disabled people to interact with their environment using only brain activity. It consists of classifying user’s thoughts in order to translate them into commands, such as controlling wheelchairs, cursor movement, or spelling. The proposed method follows a functional model, as is the case for any BCI, and can be achieved through three main phases: data acquisition and preprocessing, feature extraction, and classification of brains activities. For this purpose, we propose an interpretation model implementing a quantization method using both fast Fourier transform with root mean square error for feature extraction and a self-organizing-map-based neural network to generate classifiers, allowing better interpretation of brain activities. In order to show the effectiveness of the proposed methodology, an experimental study was conducted by exploiting five mental activities acquired by a G.tec BCI system containing 16 simultaneously sampled bio-signal channels with 24 bits, with experiments performed on 10 randomly chosen subjects.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3