QoS-Aware and Energy Data Management in Industrial IoT

Author:

Abdullah Yarob1,Movahedi Zeinab1

Affiliation:

1. School of Computer Engineering, University of Science and Technology of Iran, Tehran 1684613114, Iran

Abstract

Two crucial challenges in Industry 4.0 involve maintaining critical latency requirements for data access and ensuring efficient power consumption by field devices. Traditional centralized industrial networks that provide rudimentary data distribution capabilities may not be able to meet such stringent requirements. These requirements cannot be met later due to connection or node failures or extreme performance decadence. To address this problem, this paper focuses on resource-constrained networks of Internet of Things (IoT) systems, exploiting the presence of several more powerful nodes acting as distributed local data storage proxies for every IoT set. To increase the battery lifetime of the network, a number of nodes that are not included in data transmission or data storage are turned off. In this paper, we investigate the issue of maximizing network lifetime, and consider the restrictions on data access latency. For this purpose, data are cached distributively in proxy nodes, leading to a reduction in energy consumption and ultimately maximizing network lifetime. To address this problem, we introduce an energy-aware data management method (EDMM); with the goal of extending network lifetime, select IoT nodes are designated to save data distributively. Our proposed approach (1) makes sure that data access latency is underneath a specified threshold and (2) performs well with respect to network lifetime compared to an offline centralized heuristic algorithm.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3