Impacts of Topology and Bandwidth on Distributed Shared Memory Systems

Author:

Milton Jonathan1ORCID,Zarkesh-Ha Payman1ORCID

Affiliation:

1. Department of Electrical and Computer Engineering (ECE), University of New Mexico, Albuquerque, NM 87131-1070, USA

Abstract

As high-performance computing designs become increasingly complex, the importance of evaluating with simulation also grows. One of the most critical aspects of distributed computing design is the network architecture; different topologies and bandwidths have dramatic impacts on the overall performance of the system and should be explored to find the optimal design point. This work uses simulations developed to run in the existing Structural Simulation Toolkit v12.1.0 software framework to show that for a hypothetical test case, more complicated network topologies have better overall performance and performance improves with increased bandwidth, making them worth the additional design effort and expense. Specifically, the test case HyperX topology is shown to outperform the next best evaluated topology by thirty percent and is the only topology that did not experience diminishing performance gains with increased bandwidth.

Funder

University of New Mexico

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference26 articles.

1. Balusamy, B., Abirami, R.N., Kadry, S., and Gandomi, A.H. (2021). Big Data: Concepts, Technology, and Architecture, Wiley.

2. Kogge, P., Bergman, K., Borkar, S., Campbell, D., Carlson, W., Dally, W., Denneau, M., Franzon, P., Harrod, W., and Hill, K. (2008). Exascale Computing Study: Technology Challenges in Achieving Exascale Systems, DARPA IPTO.

3. Elnozahy, E.N., Bianchini, R., El-Ghazawi, T., Fox, A., Godfrey, F., Hoisie, A., McKinley, K., Melhem, R., Plank, J.S., and Ranganathan, P. (2008). System Resilience at Extreme Scale, DARPA IPTO.

4. Sarkar, V., Amarasinghe, S., Campbell, D., Carlson, W., Chien, A., Dally, W., Elnohazy, E.N., Hall, M., Harrison, R., and Harrod, W. (2009). ExaScale Software Study: Software Challenges in Extreme Scale Systems, DARPA IPTO.

5. Jagasivamani, M. (2020). Resistive Ram Based Main-Memory Systems: Understanding the Opportunities, Limitations, and Tradeoffs. [Ph.D. Dissertation, University of Maryland].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3