Foot-to-Ground Phases Detection: A Comparison of Data Representation Formatting Methods with Respect to Adaption of Deep Learning Architectures

Author:

El Marhraoui Youness,Amroun HamdiORCID,Boukallel Mehdi,Anastassova Margarita,Lamy Sylvie,Bouilland Stéphane,Ammi Mehdi

Abstract

Identifying the foot stance and foot swing phases, also known as foot-to-ground (FTG) detection, is a branch of Human Activity Recognition (HAR). Our study aims to detect two main phases of the gait (i.e., foot-off and foot-contact) corresponding to the moments when each foot is in contact with the ground or not. This will allow the medical professionals to characterize and identify the different phases of the human gait and their respective patterns. This detection process is paramount for extracting gait features (e.g., step width, stride width, gait speed, cadence, etc.) used by medical experts to highlight gait anomalies, stance issues, or any other walking irregularities. It will be used to assist health practitioners with patient monitoring, in addition to developing a full pipeline for FTG detection that would help compute gait indicators. In this paper, a comparison of different training configurations, including model architectures, data formatting, and pre-processing, was conducted to select the parameters leading to the highest detection accuracy. This binary classification provides a label for each timestamp informing whether the foot is in contact with the ground or not. Models such as CNN, LSTM, and ConvLSTM were the best fits for this study. Yet, we did not exclude DNNs and Machine Learning models, such as Random Forest and XGBoost from our work in order to have a wide range of possible comparisons. As a result of our experiments, which included 27 senior participants who had a stroke in the past wearing IMU sensors on their ankles, the ConvLSTM model achieved a high accuracy of 97.01% for raw windowed data with a size of 3 frames per window, and each window was formatted to have two superimposed channels (accelerometer and gyroscope channels). The model was trained to have the best detection without any knowledge of the participants’ personal information including age, gender, health condition, the type of activity, or the used foot. In other words, the model’s input data only originated from IMU sensors. Overall, in terms of FTG detection, the combination of the ConvLSTM model and the data representation had an important impact in outperforming other start-of-the-art configurations; in addition, the compromise between the model’s complexity and its accuracy is a major asset for deploying this model and developing real-time solutions.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Comparative Analysis of XGBoost and LightGBM Approaches for Human Activity Recognition: Speed and Accuracy Evaluation;International Journal of Computational and Experimental Science and Engineering;2024-06-27

2. Zero Crossing Point Detection in a Distorted Sinusoidal Signal Using Decision Tree Classifier;Advances in Electrical and Electronic Engineering;2023-02-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3