Indoor Scene Classification through Dual-Stream Deep Learning: A Framework for Improved Scene Understanding in Robotics

Author:

Khan Sultan Daud1ORCID,Othman Kamal M.2ORCID

Affiliation:

1. Department of Computer Science, National University of Technology, Islamabad 44000, Pakistan

2. Department of Electrical Engineering, College of Engineering, Umm Al-Qura University, Makkah 24382, Saudi Arabia

Abstract

Indoor scene classification plays a pivotal role in enabling social robots to seamlessly adapt to their environments, facilitating effective navigation and interaction within diverse indoor scenes. By accurately characterizing indoor scenes, robots can autonomously tailor their behaviors, making informed decisions to accomplish specific tasks. Traditional methods relying on manually crafted features encounter difficulties when characterizing complex indoor scenes. On the other hand, deep learning models address the shortcomings of traditional methods by autonomously learning hierarchical features from raw images. Despite the success of deep learning models, existing models still struggle to effectively characterize complex indoor scenes. This is because there is high degree of intra-class variability and inter-class similarity within indoor environments. To address this problem, we propose a dual-stream framework that harnesses both global contextual information and local features for enhanced recognition. The global stream captures high-level features and relationships across the scene. The local stream employs a fully convolutional network to extract fine-grained local information. The proposed dual-stream architecture effectively distinguishes scenes that share similar global contexts but contain different localized objects. We evaluate the performance of the proposed framework on a publicly available benchmark indoor scene dataset. From the experimental results, we demonstrate the effectiveness of the proposed framework.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3