iHand: Hand Recognition-Based Text Input Method for Wearable Devices

Author:

Chu Qiang1,Chen Chao Ping1ORCID,Hu Haiyang1,Wu Xiaojun1,Han Baoen1

Affiliation:

1. Smart Display Lab, Department of Electronic Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

Abstract

Text input using hand gestures is an essential component of human–computer interaction technology, providing users with a more natural and enriching interaction experience. Nevertheless, the current gesture input methods have a variety of issues, including a high learning cost for users, poor input performance, and reliance on hardware. To solve these problems and better meet the interaction requirements, a hand recognition-based text input method called iHand is proposed in this paper. In iHand, a two-branch hand recognition algorithm combining a landmark model and a lightweight convolutional neural network is used. The landmark model is used as the backbone network to extract hand landmarks, and then an optimized classification head, which can preserve the space structure of landmarks, is designed to classify gestures. When the landmark model fails to extract hand landmarks, a lightweight convolutional neural network is employed for classification. Regarding the way letters are entered, to reduce the learning cost, the sequence of letters is mapped as a two-dimensional layout, and users can type with seven simple hand gestures. Experimental results on the public datasets show that the proposed hand recognition algorithm achieves high robustness compared to state-of-the-art approaches. Furthermore, we tested the performance of users’ initial use of iHand for text input. The results showed that the iHand’s average input speed was 5.6 words per minute, with the average input error rate was only 1.79%.

Funder

Shanghai Rockers Inc.

Natural Science Foundation of Chongqing Municipality

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3