Semantic Features for Optimizing Supervised Approach of Sentiment Analysis on Product Reviews

Author:

Setya Rintyarna BagusORCID,Sarno Riyanarto,Fatichah Chastine

Abstract

The growth of ecommerce has triggered online reviews as a rich source of product information. Revealing consumer sentiment from the reviews through Sentiment Analysis (SA) is an important task of online product review analysis. Two popular approaches of SA are the supervised approach and the lexicon-based approach. In supervised approach, the employed machine learning (ML) algorithm is not the only one to influence the results of SA. The utilized text features also handle an important role in determining the performance of SA tasks. In this regard, we proposed a method to extract text features that takes into account semantic of words. We argue that this semantic feature is capable of augmenting the results of supervised SA tasks compared to commonly utilized features, i.e., bag-of-words (BoW). To extract the features, we assigned the correct sense of the word in reviewing the sentence by adopting a Word Sense Disambiguation (WSD) technique. Several WordNet similarity algorithms were involved, and correct sentiment values were assigned to words. Accordingly, we generated text features for product review documents. To evaluate the performance of our text features in the supervised approach, we conducted experiments using several ML algorithms and feature selection methods. The results of the experiments using 10-fold cross-validation indicated that our proposed semantic features favorably increased the performance of SA by 10.9%, 9.2%, and 10.6% of precision, recall, and F-Measure, respectively, compared with baseline methods.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3