An Analytical Comparison of Locally-Connected Reconfigurable Neural Network Architectures Using a C. elegans Locomotive Model

Author:

Graham-Harper-Cater Jonathan,Metcalfe BenjaminORCID,Wilson Peter

Abstract

The scale of modern neural networks is growing rapidly, with direct hardware implementations providing significant speed and energy improvements over their software counterparts. However, these hardware implementations frequently assume global connectivity between neurons and thus suffer from communication bottlenecks. Such issues are not found in biological neural networks. It should therefore be possible to develop new architectures to reduce the dependence on global communications by considering the connectivity of biological networks. This paper introduces two reconfigurable locally-connected architectures for implementing biologically inspired neural networks in real time. Both proposed architectures are validated using the segmented locomotive model of the C. elegans, performing a demonstration of forwards, backwards serpentine motion and coiling behaviours. Local connectivity is discovered to offer up to a 17.5× speed improvement over hybrid systems that use combinations of local and global infrastructure. Furthermore, the concept of locality of connections is considered in more detail, highlighting the importance of dimensionality when designing neuromorphic architectures. Convolutional Neural Networks are shown to map poorly to locally connected architectures despite their apparent local structure, and both the locality and dimensionality of new neural processing systems is demonstrated as a critical component for matching the function and efficiency seen in biological networks.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3