A Comparative Study of Commit Representations for JIT Vulnerability Prediction

Author:

Aladics Tamás12ORCID,Hegedűs Péter1ORCID,Ferenc Rudolf1ORCID

Affiliation:

1. Department of Sofware Engineering, University of Szeged, 6720 Szeged, Hungary

2. FrontEndART Ltd., 6720 Szeged, Hungary

Abstract

With the evolution of software systems, their size and complexity are rising rapidly. Identifying vulnerabilities as early as possible is crucial for ensuring high software quality and security. Just-in-time (JIT) vulnerability prediction, which aims to find vulnerabilities at the time of commit, has increasingly become a focus of attention. In our work, we present a comparative study to provide insights into the current state of JIT vulnerability prediction by examining three candidate models: CC2Vec, DeepJIT, and Code Change Tree. These unique approaches aptly represent the various techniques used in the field, allowing us to offer a thorough description of the current limitations and strengths of JIT vulnerability prediction. Our focus was on the predictive power of the models, their usability in terms of false positive (FP) rates, and the granularity of the source code analysis they are capable of handling. For training and evaluation, we used two recently published datasets containing vulnerability-inducing commits: ProjectKB and Defectors. Our results highlight the trade-offs between predictive accuracy and operational flexibility and also provide guidance on the use of ML-based automation for developers, especially considering false positive rates in commit-based vulnerability prediction. These findings can serve as crucial insights for future research and practical applications in software security.

Funder

European Union

Ministry of Innovation and Technology of Hungary from the National Research, Development and Innovation Fund

EU-funded project Sec4AI4Sec

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3