An Interactive Training Model for Myoelectric Regression Control Based on Human–Machine Cooperative Performance

Author:

Igual Carles1ORCID,Castillo Alberto2,Igual Jorge1ORCID

Affiliation:

1. Instituto de Telecomunicaciones y Aplicaciones Multimedia (ITEAM), Universitat Politècnica de València, 46022 Valencia, Spain

2. Center for Diabetes Tecnology, University of Virginia, Charlottesville, VA 22901, USA

Abstract

Electromyography-based wearable biosensors are used for prosthetic control. Machine learning prosthetic controllers are based on classification and regression models. The advantage of the regression approach is that it permits us to obtain a smoother and more natural controller. However, the existing training methods for regression-based solutions is the same as the training protocol used in the classification approach, where only a finite set of movements are trained. In this paper, we present a novel training protocol for myoelectric regression-based solutions that include a feedback term that allows us to explore more than a finite set of movements and is automatically adjusted according to real-time performance of the subject during the training session. Consequently, the algorithm distributes the training time efficiently, focusing on the movements where the performance is worse and optimizing the training for each user. We tested and compared the existing and new training strategies in 20 able-bodied participants and 4 amputees. The results show that the novel training procedure autonomously produces a better training session. As a result, the new controller outperforms the one trained with the existing method: for the able-bodied participants, the average number of targets hit is increased from 86% to 95% and the path efficiency from 40% to 84%, while for the subjects with limb deficiencies, the completion rate is increased from 58% to 69% and the path efficiency from 24% to 56%.

Funder

Ministerio de Educacion, Cultura y Deporte

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3