An NLP-Based Exploration of Variance in Student Writing and Syntax: Implications for Automated Writing Evaluation

Author:

Goldshtein Maria1,Alhashim Amin G.2ORCID,Roscoe Rod D.1ORCID

Affiliation:

1. Human Systems Engineering, Arizona State University, Mesa, AZ 85212, USA

2. Mathematics, Statistics, and Computer Science, Macalester College, Saint Paul, MN 55105, USA

Abstract

In writing assessment, expert human evaluators ideally judge individual essays with attention to variance among writers’ syntactic patterns. There are many ways to compose text successfully or less successfully. For automated writing evaluation (AWE) systems to provide accurate assessment and relevant feedback, they must be able to consider similar kinds of variance. The current study employed natural language processing (NLP) to explore variance in syntactic complexity and sophistication across clusters characterized in a large corpus (n = 36,207) of middle school and high school argumentative essays. Using NLP tools, k-means clustering, and discriminant function analysis (DFA), we observed that student writers employed four distinct syntactic patterns: (1) familiar and descriptive language, (2) consistently simple noun phrases, (3) variably complex noun phrases, and (4) moderate complexity with less familiar language. Importantly, each pattern spanned the full range of writing quality; there were no syntactic patterns consistently evaluated as “good” or “bad”. These findings support the need for nuanced approaches in automated writing assessment while informing ways that AWE can participate in that process. Future AWE research can and should explore similar variability across other detectable elements of writing (e.g., vocabulary, cohesion, discursive cues, and sentiment) via diverse modeling methods.

Funder

Gates Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3