MRI Breast Tumor Segmentation Using Different Encoder and Decoder CNN Architectures

Author:

Adoui ,Mahmoudi ,Larhmam ,Benjelloun

Abstract

Breast tumor segmentation in medical images is a decisive step for diagnosis and treatment follow-up. Automating this challenging task helps radiologists to reduce the high manual workload of breast cancer analysis. In this paper, we propose two deep learning approaches to automate the breast tumor segmentation in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) by building two fully convolutional neural networks (CNN) based on SegNet and U-Net. The obtained models can handle both detection and segmentation on each single DCE-MRI slice. In this study, we used a dataset of 86 DCE-MRIs, acquired before and after two cycles of chemotherapy, of 43 patients with local advanced breast cancer, a total of 5452 slices were used to train and validate the proposed models. The data were annotated manually by an experienced radiologist. To reduce the training time, a high-performance architecture composed of graphic processing units was used. The model was trained and validated, respectively, on 85% and 15% of the data. A mean intersection over union (IoU) of 68.88 was achieved using SegNet and 76.14% using U-Net architecture.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Cited by 76 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3