Prevention of Crypto-Ransomware Using a Pre-Encryption Detection Algorithm

Author:

Kok S.ORCID,Abdullah AzweenORCID,Jhanjhi NZORCID,Supramaniam MahadevanORCID

Abstract

Ransomware is a relatively new type of intrusion attack, and is made with the objective of extorting a ransom from its victim. There are several types of ransomware attacks, but the present paper focuses only upon the crypto-ransomware, because it makes data unrecoverable once the victim’s files have been encrypted. Therefore, in this research, it was proposed that machine learning is used to detect crypto-ransomware before it starts its encryption function, or at the pre-encryption stage. Successful detection at this stage is crucial to enable the attack to be stopped from achieving its objective. Once the victim was aware of the presence of crypto-ransomware, valuable data and files can be backed up to another location, and then an attempt can be made to clean the ransomware with minimum risk. Therefore we proposed a pre-encryption detection algorithm (PEDA) that consisted of two phases. In, PEDA-Phase-I, a Windows application programming interface (API) generated by a suspicious program would be captured and analyzed using the learning algorithm (LA). The LA can determine whether the suspicious program was a crypto-ransomware or not, through API pattern recognition. This approach was used to ensure the most comprehensive detection of both known and unknown crypto-ransomware, but it may have a high false positive rate (FPR). If the prediction was a crypto-ransomware, PEDA would generate a signature of the suspicious program, and store it in the signature repository, which was in Phase-II. In PEDA-Phase-II, the signature repository allows the detection of crypto-ransomware at a much earlier stage, which was at the pre-execution stage through the signature matching method. This method can only detect known crypto-ransomware, and although very rigid, it was accurate and fast. The two phases in PEDA formed two layers of early detection for crypto-ransomware to ensure zero files lost to the user. However in this research, we focused upon Phase-I, which was the LA. Based on our results, the LA had the lowest FPR of 1.56% compared to Naive Bayes (NB), Random Forest (RF), Ensemble (NB and RF) and EldeRan (a machine learning approach to analyze and classify ransomware). Low FPR indicates that LA has a low probability of predicting goodware wrongly.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference35 articles.

1. A Comprehensive Survey: Ransomware Attacks Prevention, Monitoring and Damage Control;Tailor;Int. J. Res. Sci. Innov.,2017

2. A review of latest wannacry ransomware: Actions and preventions;Askarifar;J. Eng. Sci. Technol.,2018

3. A Survey of Malware Detection Techniques;Mathur,2007

4. A Short Review for Ransomware: Pros and Cons;Shakir,2018

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Trends and challenges in research into the human aspects of ransomware: a systematic mapping study;Information & Computer Security;2024-07-05

2. Ransomware Detection Model Based on Adaptive Graph Neural Network Learning;Applied Sciences;2024-05-27

3. Malware Detection using Machine Learning;International Journal of Innovative Science and Research Technology (IJISRT);2024-05-07

4. An Empirical Study of Data Disruption by Ransomware Attacks;Proceedings of the IEEE/ACM 46th International Conference on Software Engineering;2024-04-12

5. Ransomware early detection: A survey;Computer Networks;2024-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3