A Holistic Approach to Use Educational Robots for Supporting Computer Science Courses

Author:

Mamatnabiyev Zhumaniyaz1ORCID,Chronis Christos2ORCID,Varlamis Iraklis2ORCID,Himeur Yassine3ORCID,Zhaparov Meirambek4ORCID

Affiliation:

1. Department of Computer Sciences, SDU University, Abylaikhan Street 1/1, Kaskelen 040900, Kazakhstan

2. Department of Informatics and Telematics, Harokopio University of Athens, Omirou 9, 17778 Athens, Greece

3. Faculty of Engineering and Information Technology, University of Dubai, Academic City, Emirates Road-Exit 49, Dubai P.O. Box 14143, United Arab Emirates

4. ICT Faculty, Paragon International University, Phnom Penh 12151, Cambodia

Abstract

Robots are intelligent machines that are capable of autonomously performing intricate sequences of actions, with their functionality being primarily driven by computer programs and machine learning models. Educational robots are specifically designed and used for teaching and learning purposes and attain the interest of learners in gaining knowledge about science, technology, engineering, arts, and mathematics. Educational robots are widely applied in different fields of primary and secondary education, but their usage in teaching higher education subjects is limited. Even when educational robots are used in tertiary education, the use is sporadic, targets specific courses or subjects, and employs robots with narrow applicability. In this work, we propose a holistic approach to the use of educational robots in tertiary education. We demonstrate how an open source educational robot can be used by colleges, and universities in teaching multiple courses of a computer science curriculum, fostering computational and creative thinking in practice. We rely on an open-source and open design educational robot, called FOSSBot, which contains various IoT technologies for measuring data, processing it, and interacting with the physical world. Grace to its open nature, FOSSBot can be used in preparing the content and supporting learning activities for different subjects such as electronics, computer networks, artificial intelligence, computer vision, etc. To support our claim, we describe a computer science curriculum containing a wide range of computer science courses and explain how each course can be supported by providing indicative activities. The proposed one-year curriculum can be delivered at the postgraduate level, allowing computer science graduates to delve deep into Computer Science subjects. After examining related works that propose the use of robots in academic curricula we detect the gap that still exists for a curriculum that is linked to an educational robot and we present in detail each proposed course, the software libraries that can be employed for each course and the possible extensions to the open robot that will allow to further extend the curriculum with more topics or enhance it with activities. With our work, we show that by incorporating educational robots in higher education we can address this gap and provide a new ledger for boosting tertiary education.

Funder

Erasmus+ (KA220-HED-Cooperation partnerships in higher education) project S.T.E.P.S.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3