Minimal Complexity Support Vector Machines for Pattern Classification

Author:

Abe Shigeo

Abstract

Minimal complexity machines (MCMs) minimize the VC (Vapnik-Chervonenkis) dimension to obtain high generalization abilities. However, because the regularization term is not included in the objective function, the solution is not unique. In this paper, to solve this problem, we discuss fusing the MCM and the standard support vector machine (L1 SVM). This is realized by minimizing the maximum margin in the L1 SVM. We call the machine Minimum complexity L1 SVM (ML1 SVM). The associated dual problem has twice the number of dual variables and the ML1 SVM is trained by alternatingly optimizing the dual variables associated with the regularization term and with the VC dimension. We compare the ML1 SVM with other types of SVMs including the L1 SVM using several benchmark datasets and show that the ML1 SVM performs better than or comparable to the L1 SVM.

Publisher

MDPI AG

Subject

Computer Networks and Communications,Human-Computer Interaction

Reference41 articles.

1. Statistical Learning Theory;Vapnik,1998

2. Support Vector Machines for Pattern Classification;Abe,2010

3. Training of Support Vector Machines with Mahalanobis Kernels;Abe,2005

4. Weighted Mahalanobis Distance Kernels for Support Vector Machines

5. Scalable Large-Margin Mahalanobis Distance Metric Learning

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Do Minimal Complexity Least Squares Support Vector Machines Work?;Artificial Neural Networks in Pattern Recognition;2022-11-11

2. Soft Upper-bound Support Vector Machines;2022 International Joint Conference on Neural Networks (IJCNN);2022-07-18

3. The journey to develop the ideal submucosal injection solution for endoscopic submucosal dissection;Gastrointestinal Endoscopy;2021-02

4. Soft Upper-bound Minimal Complexity LP SVMs;IEEE IJCNN;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3