Hand Gesture Recognition on a Resource-Limited Interactive Wristband

Author:

Zhao ShenglinORCID,Cai Haoyuan,Li Wenkuan,Liu Yaqian,Liu ChunxiuORCID

Abstract

Most of the reported hand gesture recognition algorithms require high computational resources, i.e., fast MCU frequency and significant memory, which are highly inapplicable to the cost-effectiveness of consumer electronics products. This paper proposes a hand gesture recognition algorithm running on an interactive wristband, with computational resource requirements as low as Flash < 5 KB, RAM < 1 KB. Firstly, we calculated the three-axis linear acceleration by fusing accelerometer and gyroscope data with a complementary filter. Then, by recording the order of acceleration vectors crossing axes in the world coordinate frame, we defined a new feature code named axis-crossing code. Finally, we set templates for eight hand gestures to recognize new samples. We compared this algorithm’s performance with the widely used dynamic time warping (DTW) algorithm and recurrent neural network (BiLSTM and GRU). The results show that the accuracies of the proposed algorithm and RNNs are higher than DTW and that the time cost of the proposed algorithm is much less than those of DTW and RNNs. The average recognition accuracy is 99.8% on the collected dataset and 97.1% in the actual user-independent case. In general, the proposed algorithm is suitable and competitive in consumer electronics. This work has been volume-produced and patent-granted.

Funder

National Natural Science Foundation of China

Beijing Natural Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized k-Nearest neighbors search implementation on resource-constrained FPGA platforms;Microprocessors and Microsystems;2024-09

2. A Smartwatch-based Approach for Oral Health Monitoring using Deep Learning;Proceedings of the 17th International Conference on PErvasive Technologies Related to Assistive Environments;2024-06-26

3. Quantitative Analysis of Coins as Size Reference;IEEE Transactions on Instrumentation and Measurement;2024

4. Exploring Challenges and Opportunities of Wearable Robots: A Comprehensive Review of Design, Human-Robot Interaction and Control Strategy;APSIPA Transactions on Signal and Information Processing;2023

5. A Geometric Model-Based Approach to Hand Gesture Recognition;IEEE Transactions on Systems, Man, and Cybernetics: Systems;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3