Net Carbon Balance between Priming and Replenishment of Soil Organic Carbon with Biochar Addition Regulated by N Addition Differing in Contrasting Forest Ecosystems

Author:

Sun Zhaolin,Wang Qingkui,Zhu Yifan

Abstract

The replenishment and priming effect (PE) are two decisive processes that determine the carbon (C) sequestration potential of biochar. However, how increased nitrogen (N) availability affect these two processes and the consequent net C balance remains poorly understood. By collecting soils from three forest ecosystems (deciduous broad-leaf forest (DBF), evergreen coniferous forest (ECF), and evergreen broad-leaf forest (EBF)), we conducted a 365-day incubation experiment by adding 13C-labelled biochar plus five rates of inorganic N (0 to 15% N of soil total N). The -results showed that N addition significantly stimulated the early period (0–48 days) but did not affect the late period (49–365 days) of biochar decomposition. The effect of N addition on PE varied largely with the forest type and decomposition period; N addition significantly enhanced the negative PE -in both periods in DBF and at the late period in EBF, whereas it stimulated positive PE in the early period in EBF and ECF. At the end of incubation, the addition of biochar caused net C accumulation across all treatments due to the huge proportion of biochar (98.1%–98.9% of added biochar) retained in soils and the negative or neutral cumulative PE (−11.25–0.35 g C kg−1 SOC), and the magnitude of net C balance increased linearly with the N addition rate in DBF and EBF. Collectively, the results of this study indicate that biochar input can contribute to soil C sequestration and that N addition can enhance the C sequestration potential of biochar.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Forestry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3