Automated Feature-Based Down-Sampling Approaches for Fine Registration of Irregular Point Clouds

Author:

Al-Rawabdeh AbdullaORCID,He FangningORCID,Habib AymanORCID

Abstract

The integration of three-dimensional (3D) data defined in different coordinate systems requires the use of well-known registration procedures, which aim to align multiple models relative to a common reference frame. Depending on the achieved accuracy of the estimated transformation parameters, the existing registration procedures are classified as either coarse or fine registration. Coarse registration is typically used to establish a rough alignment between the involved point clouds. Fine registration starts from coarsely aligned point clouds to achieve more precise alignment of the involved datasets. In practice, the acquired/derived point clouds from laser scanning and image-based dense matching techniques usually include an excessive number of points. Fine registration of huge datasets is time-consuming and sometimes difficult to accomplish in a reasonable timeframe. To address this challenge, this paper introduces two down-sampling approaches, which aim to improve the efficiency and accuracy of the iterative closest patch (ICPatch)-based fine registration. The first approach is based on a planar-based adaptive down-sampling strategy to remove redundant points in areas with high point density while keeping the points in lower density regions. The second approach starts with the derivation of the surface normals for the constituents of a given point cloud using their local neighborhoods, which are then represented on a Gaussian sphere. Down-sampling is ultimately achieved by removing the points from the detected peaks in the Gaussian sphere. Experiments were conducted using both simulated and real datasets to verify the feasibility of the proposed down-sampling approaches for providing reliable transformation parameters. Derived experimental results have demonstrated that for most of the registration cases, in which the points are obtained from various mapping platforms (e.g., mobile/static laser scanner or aerial photogrammetry), the first proposed down-sampling approach (i.e., adaptive down-sampling approach) was capable of exceeding the performance of the traditional approaches, which utilize either the original or randomly down-sampled points, in terms of providing smaller Root Mean Square Errors (RMSE) values and a faster convergence rate. However, for some challenging cases, in which the acquired point cloud only has limited geometric constraints, the Gaussian sphere-based approach was capable of providing superior performance as it preserves some critical points for the accurate estimation of the transformation parameters relating the involved point clouds.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference51 articles.

1. An approach for real world data modelling with the 3D terrestrial laser scanner for built environment

2. 3D Laser Scanning for Heritage: Advice and Guidance on the Use of Laser Scanning in Archaeology and Architecture;Boardman,2018

3. Terrestrial Laser Scan Application in Urban Planning;El Nabbout,2011

4. A Mobile LiDAR for Monitoring Mechanically Stabilized Earth Walls with Textured Precast Concrete Panels

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3