Study on the Preparation of Ionic Liquid Doped Chitosan/Cellulose-Based Electroactive Composites

Author:

Wang Fang,Xie Chong,Qian LiyingORCID,He Beihai,Li JunrongORCID

Abstract

Electro-actuated polymer (EAP) can change its shape or volume under the action of an external electric field and shows similar behavioral characteristics with those of biological muscles, and so it has good application prospects in aerospace, bionic robots, and other fields. The properties of cellulose-based electroactive materials are similar to ionic EAP materials, although they have higher Young’s modulus and lower energy consumption. However, cellulose-based electroactive materials have a more obvious deficiency—their actuation performance is often more significantly affected by ambient humidity due to the hygroscopicity caused by the strong hydrophilic structure of cellulose itself. Compared with cellulose, chitosan has good film-forming and water retention properties, and its compatibility with cellulose is very excellent. In this study, a chitosan/cellulose composite film doped with ionic liquid, 1-ethyl-3-methylimidazolium acetate ([EMIM]Ac), was prepared by co-dissolution and regeneration process using [EMIM]Ac as the solvent. After that, a conductive polymer, poly(3,4-ethylenedioxythiophene)/poly (styrene sulfonate) (PEDOT: PSS), was deposited on the surface of the resulted composite, and then a kind of cellulose-based electroactive composites were obtained. The results showed that the end bending deformation amplitude of the resulted material was increased by 2.3 times higher than that of the pure cellulose film under the same conditions, and the maximum deformation amplitude reached 7.3 mm. The tensile strength of the chitosan/cellulose composite film was 53.68% higher than that of the cellulose film, and the Young’s modulus was increased by 72.52%. Furthermore, in comparison with the pure cellulose film, the water retention of the composite film increased and the water absorption rate decreased obviously, which meant that the resistance of the material to changes in environmental humidity was greatly improved.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3