Thermo-Responsive Polymer Brushes with Side Graft Chains: Relationship Between Molecular Architecture and Underwater Adherence

Author:

Sidoli Ugo,Tee Hisaschi T.,Raguzin Ivan,Mühldorfer Jakob,Wurm Frederik R.,Synytska Alla

Abstract

During the last few decades, wet adhesives have been developed for applications in various fields. Nonetheless, key questions such as the most suitable polymer architecture as well as the most suitable chemical composition remain open. In this article, we investigate the underwater adhesion properties of novel responsive polymer brushes with side graft chain architecture prepared using “grafting through” approach on flat surfaces. The incorporation in the backbone of thermo-responsive poly(N-isopropylacrylamide) (PNIPAm) allowed us to obtain LCST behavior in the final layers. PNIPAm is co-polymerized with poly(methyl ethylene phosphate) (PMEP), a poloyphosphoester. The final materials are characterized studying the surface-grafted polymer as well as the polymer from the bulk solution, and pure PNIPAm brush is used as reference. PNIPAm-g-PMEP copolymers retain the responsive behavior of PNIPAm: when T > LCST, a clear switching of properties is observed. More specifically, all layers above the critical temperature show collapse of the chains, increased hydrophobicity and variation of the surface charge even if no ionizable groups are present. Secondly, effect of adhesion parameters such as debonding rate and contact time is studied. Thirdly, the reversibility of the adhesive properties is confirmed by performing adhesion cycles. Finally, the adhesive properties of the layers are studied below and above the LCST against hydrophilic and hydrophobic substrates.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3