Forsythoside A and Forsythoside B Contribute to Shuanghuanglian Injection-Induced Pseudoallergic Reactions through the RhoA/ROCK Signaling Pathway

Author:

Han Jiayin,Zhang YushiORCID,Pan Chen,Xian Zhong,Pan ChenlingORCID,Zhao Yong,Li Chunying,Yi Yan,Wang Lianmei,Tian Jingzhuo,Liu Suyan,Wang Dunfang,Meng Jing,Liang Aihua

Abstract

In recent years, hypersensitivity reactions to the Shuanghuanglian injection have attracted broad attention. However, the componential chief culprits inducing the reactions and the underlying mechanisms involved have not been completely defined. In this study, we used a combination of approaches based on the mouse model, human umbilical vein endothelial cell monolayer, real-time cellular monitoring, immunoblot analysis, pharmacological inhibition, and molecular docking. We demonstrated that forsythoside A and forsythoside B contributed to Shuanghuanglian injection-induced pseudoallergic reactions through activation of the RhoA/ROCK signaling pathway. Forsythoside A and forsythoside B could trigger dose-dependent vascular leakage in mice. Moreover, forsythoside A and forsythoside B slightly elicited mast cell degranulation. Correspondingly, treatment with forsythoside A and forsythoside B disrupted the endothelial barrier and augmented the expression of GTP-RhoA, p-MYPT1, and p-MLC2 in a concentration-dependent manner. Additionally, the ROCK inhibitor effectively alleviated forsythoside A/forsythoside B-induced hyperpermeability in both the endothelial cells and mice. Similar responses were not observed in the forsythoside E-treated animals and cells. These differences may be related to the potential of the tested compounds to react with RhoA-GTPγS and form stable interactions. This study innovatively revealed that some forsythosides may cause vascular leakage, and therefore, limiting their contents in injections should be considered.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3