3D Visualization Techniques for Analysis and Archaeological Interpretation of GPR Data

Author:

Bornik AlexanderORCID,Neubauer WolfgangORCID

Abstract

The non-invasive detection and digital documentation of buried archaeological heritage by means of geophysical prospection is increasingly gaining importance in modern field archaeology and archaeological heritage management. It frequently provides the detailed information required for heritage protection or targeted further archaeological research. High-resolution magnetometry and ground-penetrating radar (GPR) became invaluable tools for the efficient and comprehensive non-invasive exploration of complete archaeological sites and archaeological landscapes. The analysis and detailed archaeological interpretation of the resulting large 2D and 3D datasets, and related data from aerial archaeology or airborne remote sensing, etc., is a time-consuming and complex process, which requires the integration of all data at hand, respective three-dimensional imagination, and a broad understanding of the archaeological problem; therefore, informative 3D visualizations supporting the exploration of complex 3D datasets and supporting the interpretative process are in great demand. This paper presents a novel integrated 3D GPR interpretation approach, centered around the flexible 3D visualization of heterogeneous data, which supports conjoint visualization of scenes composed of GPR volumes, 2D prospection imagery, and 3D interpretative models. We found that the flexible visual combination of the original 3D GPR datasets and images derived from the data applying post-processing techniques inspired by medical image analysis and seismic data processing contribute to the perceptibility of archaeologically relevant features and their respective context within a stratified volume. Moreover, such visualizations support the interpreting archaeologists in their development of a deeper understanding of the complex datasets as a starting point for and throughout the implemented interactive interpretative process.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3