Impacts of Land Use Changes on Net Primary Productivity in Urban Agglomerations under Multi-Scenarios Simulation

Author:

Chen Yuhan,Wang Jia,Xiong Nina,Sun Lu,Xu Jiangqi

Abstract

Land use is closely related to the sustainability of ecological development. This paper employed a patch-generating land use simulation (PLUS) model for the multi-scenario simulation of urban agglomerations. In addition, mathematical analysis methods such as Theil-Sen Median trend analysis, R/S analysis, Getis-Ord Gi* index and unary linear regression were used to study the temporal and spatial evolution characteristics of net primary productivity (NPP) for the impact of land use changes on NPP in urban agglomerations from 2000 to 2020 and to forecast the future trend of NPP. The results indicate that urban expansion is obvious in the baseline scenario and in the ecological protection scenario. In the scenario of cropland protection, the urban expansion is consistent with the land use plan of the government for 2035. The NPP in Beijing decreased gradually from northwest to southeast. The hot spot areas are concentrated in the densely forested areas in the mountainous areas of northwest. The cold spot areas are mainly concentrated in the periphery of urban areas and water areas. The NPP will continue to increase in forest and other areas under protection and remain stable in impervious surfaces. The NPP of Beijing showed a strong improvement trend and this trend will continue with the right ecological management and urban planning of the government. The study of land use in urban agglomeration and the development trend of vegetation NPP in the future can help policymakers rationally manage future land use dynamics and maintain the sustainable development of urban regional ecosystems.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Beijing, China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3