Satellite Observations of Fire Activity in Relation to Biophysical Forcing Effect of Land Surface Temperature in Mediterranean Climate

Author:

Stoyanova Julia S.,Georgiev Christo G.,Neytchev Plamen N.

Abstract

The present work is aimed at gaining more knowledge on the nature of the relation between land surface temperature (LST) as a biophysical parameter, which is related to the coupled effect of the energy and water cycles, and fire activity over Bulgaria, in the Eastern Mediterranean. In the ecosystems of this area, prolonged droughts and heat waves create preconditions in the land surface state that increase the frequency and intensity of landscape fires. The relationships between the spatial–temporal variability of LST and fire activity modulated by land cover types and Soil Moisture Availability (SMA) are quantified. Long-term (2007–2018) datasets derived from geostationary MSG satellite observations are used: LST retrieved by the LSASAF LST product; fire activity assessed by the LSASAF FRP-Pixel product. All fires in the period of July–September occur in days associated with positive LST anomalies. Exponential regression models fit the link between LST monthly means, LST positive anomalies, LST-T2 (as a first proxy of sensible heat exchange with atmosphere), and FRP fire characteristics (number of detections; released energy FRP, MW) at high correlations. The values of biophysical drivers, at which the maximum FRP (MW) might be expected at the corresponding probability level, are identified. Results suggest that the biophysical index LST is sensitive to the changes in the dynamics of vegetation fire occurrence and severity. Dependences are found for forest, shrubs, and cultivated LCs, which indicate that satellite IR retrievals of radiative temperature is a reliable source of information for vegetation dryness and fire activity.

Funder

European Organozation of Meteorological Satellietes

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3