Bi-HRNet: A Road Extraction Framework from Satellite Imagery Based on Node Heatmap and Bidirectional Connectivity

Author:

Wu Ziyun,Zhang JinmingORCID,Zhang Lili,Liu Xiongfei,Qiao Hailang

Abstract

Today, with the rapid development of the geographic information industry, automatic road extraction from satellite imagery is a basic requirement. Most existing methods have been designed based on binary segmentation. However, these methods do not consider the topological features of road networks, which include point, edge, and direction. In this study, a topology-based multi-task convolution network is designed, namely Bi-HRNet, which can effectively learn the key features of nodes and their directions. First, the proposed network learns the node heatmap of roads, and then the pixel coordinates are extracted from the node heatmap via non-maximum suppression (NMS). At the same time, the connectivity between nodes is predicted. To improve the integrity and accuracy of connectivity, we propose a bidirectional connectivity prediction strategy, which can learn the bidirectional categories instead of direction angles. The bidirectional categories are designed based on “top-to-bottom” and “bottom-to-top” strategies, which can improve the accuracy of the connectivity between nodes. To illustrate the effectiveness of the proposed Bi-HRNet, we compare our method with several methods on different datasets. The experiments show that our method achieves a state-of-the-art performance and significantly outperforms various previous methods.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3