A Spatiotemporal Network Model for Global Ionospheric TEC Forecasting

Author:

Lin XuORCID,Wang Hongyue,Zhang Qingqing,Yao Chaolong,Chen Changxin,Cheng Lin,Li Zhaoxiong

Abstract

In the Global Navigation Satellite System, ionospheric delay is a significant source of error. The magnitude of the ionosphere total electron content (TEC) directly impacts the magnitude of the ionospheric delay. Correcting the ionospheric delay and improving the accuracy of satellite navigation positioning can both benefit from the accurate modeling and forecasting of ionospheric TEC. The majority of current ionospheric TEC forecasting research only considers the temporal or spatial dimensions, ignoring the ionospheric TEC’s spatial and temporal autocorrelation. Therefore, we constructed a spatiotemporal network model with two modules: (i) global spatiotemporal characteristics extraction via forwarding spatiotemporal characteristics transfer and (ii) regional spatiotemporal characteristics correction via reverse spatiotemporal characteristics transfer. This model can realize the complementarity of TEC global spatiotemporal characteristics and regional spatiotemporal characteristics. It also ensures that the global spatiotemporal characteristics of the global ionospheric TEC are transferred to each other in both temporal and spatial domains at the same time. The spatiotemporal network model thus achieves a spatiotemporal prediction of global ionospheric TEC. The Huber loss function is also used to suppress the gross error and noise in the ionospheric TEC data to improve the forecasting accuracy of global ionospheric TEC. We compare the results of the spatiotemporal network model with the Center for Orbit Determination in Europe (CODE), the convolutional Long Short-Term Memory (convLSTM) model and the Predictive Recurrent Neural Network (PredRNN) model for one-day forecasts of global ionospheric TEC under different conditions of time and solar activity, respectively. With internal data validation, the average root mean square error (RMSE) of our proposed algorithm increased by 21.19, 15.75, and 9.67%, respectively, during the maximum solar activity period. During the minimum solar activity period, the RMSE improved by 38.69, 38.02, and 13.54%, respectively. This algorithm can effectively be applied to ionospheric delay error correction and can improve the accuracy of satellite navigation and positioning.

Funder

National Natural Science Foundation of China

Sichuan Science and Technology Plan Project

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference53 articles.

1. Predicting TEC in China based on the neural networks optimized by genetic algorithm

2. Global ionospheric TEC prediction model integrated with semiparametric kernel estimation and autoregressive compensation;Qiu;Chin. J. Geophys. Chin. Ed.,2021

3. Regional application of ANFIS in ionosphere time series prediction at severe solar activity period

4. International reference ionosphere: Recent developments

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3