Gravitational Instability Caused by the Weight of Heat

Author:

Roupas Zacharias

Abstract

Thermal energy points towards a disordered, completely uniform state act to counter gravity’s tendency to generate order and structure through gravitational collapse. It is, therefore, expected to contribute to the stabilization of a self-gravitating, classical ideal gas over collapse. However, I identified an instability that always occurs at sufficiently high energies: the high-energy or relativistic gravothermal instability. I argue here that this instability presents an analogous core–halo structure as its Newtonian counterpart, the Antonov instability. The main difference is that in the former case the core is dominated by the gravitation of thermal energy and not rest mass energy. A relativistic generalization of Antonov’s instability—the low-energy gravothermal instability—also occurs. The two turning points, which make themselves evident as a double spiral of the caloric curve, approach each other as relativistic effects become more intense and eventually merge in a single point. Thus, the high and low-energy cases may be realized as two aspects of a single phenomenon—the gravothermal instability—which involves a core–halo separation and an intrinsic heat flow. Finally, I argue that the core formed during a core-collapse supernova is subject to the relativistic gravothermal instability if it becomes sufficiently hot and compactified at the time of the bounce. In this case, it will continue to collapse towards the formation of a black hole.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3