Abstract
The results of the experimental research on the symmetry of supersonic flow in a symmetric convergent-divergent nozzle are presented. The investigations were focused on the fact that for some flow conditions the flow in a precisely symmetric nozzle becomes asymmetric. Starting from a specific value of Mach number, the flow becomes asymmetric in terms of shock wave λ-foot geometry on both sides of a symmetric nozzle. The evolution of the abovementioned asymmetry has been analysed for Mach number value ranging from M = 1.26 to M = 1.59 with the nozzle opening angle of up to 6.5° on each side. The presented results indicate that for the same flow parameters as Mach number and Reynolds number, and for the same geometry of the nozzle, different λ-foot size is formed at each wall. This unexpected behaviour is responsible for the flow asymmetry. Numerical simulations carried out earlier confirm the appearance of shock wave asymmetry. The side in which the asymmetry takes place is accidental, as the full symmetry of simulation mesh and experiment setup was secured. In numerical simulation the asymmetry follows always the same direction. In experiments the direction of asymmetry happens alternatively without any apparent reason. The explanation of the phenomena is provided in this paper.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献