Author:
Asselmeyer-Maluga Torsten,Król Jerzy
Abstract
Category theory allows one to treat logic and set theory as internal to certain categories. What is internal to SET is 2-valued logic with classical Zermelo–Fraenkel set theory, while for general toposes it is typically intuitionistic logic and set theory. We extend symmetries of smooth manifolds with atlases defined in Set towards atlases with some of their local maps in a topos T . In the case of the Basel topos and R 4 , the local invariance with respect to the corresponding atlases implies exotic smoothness on R 4 . The smoothness structures do not refer directly to Casson handless or handle decompositions, which may be potentially useful for describing the so far merely putative exotic R 4 underlying an exotic S 4 (should it exist). The tovariance principle claims that (physical) theories should be invariant with respect to the choice of topos with natural numbers object and geometric morphisms changing the toposes. We show that the local T -invariance breaks tovariance even in the weaker sense.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献