Attribution Analysis of Runoff Variation in Kuye River Basin Based on Three Budyko Methods

Author:

Zheng Jiahao,He Yi,Jiang Xiaohui,Nie Tong,Lei Yuxin

Abstract

The Loess Plateau is the main soil erosion area within the Yellow River Basin. Quantifying the contribution rate of climate change and human activities to runoff change can provide support for water resources management in the Yellow River Basin. Kuye River Basin is located in the Loess Plateau. As a first-class tributary of the Yellow River, it was selected as the study area. Runoff from the Kuye River Basin has decreased significantly since the 1990s owing to climate change and anthropogenic coal mining. The main objective of this study was to quantify the contribution and sensitivity of climate change and anthropogenic activities to runoff changes using three popular Budyko and elasticity coefficient methods, as well as to compare the similarities and differences among the three methods. The results show that: (1) Through four mutation point test methods, the change point of runoff in the study period of Kuye River Basin is 1997. (2) The elasticity coefficients calculated by the three Budyko methods showed that during the study period, the runoff was more sensitive to changes in precipitation, followed by the catchment surface characteristic parameters and the potential evapotranspiration. (3) All three Budyko methods can yield reasonable contributions of climate change and human activity to runoff changes. The three methods together indicate that the influence of the catchment surface characteristic parameters is the most important factor for the runoff variation in the Kuye River.

Funder

the Special Funds of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3