A Network-Based Approach for Reducing Pedestrian Exposure to PM2.5 Induced by Road Traffic in Seoul

Author:

Yoon SungsooORCID,Moon Youngjoo,Jeong Jinah,Park Chan-RyulORCID,Kang Wanmo

Abstract

Urban plans for pedestrian-friendly environments by reducing exposure to air pollutants and enhancing movement are crucial for public health and accessibility of social infrastructure. Here, we develop a novel network analysis-based approach, which identifies pivotal local walkways that lower exposure risk to fine particulate matter (PM2.5) while improving the urban landscape connectivity. We employ an exponential distance-decay model and partial correlation analysis to estimate traffic-induced PM2.5 and to test the relationship between the proxies and actual PM2.5 concentrations, respectively. We use a proxy for pedestrians’ PM2.5 exposure as a movement cost when conducting network analyses to compute pedestrian network centrality, reflecting both low PM2.5 exposure risk and landscape connectivity. As a result, we found a significant contribution of traffic to the estimated PM2.5 exposure and PM2.5 concentrations. We also found that walkways make a large contribution to regional connectivity regardless of the estimated PM2.5 exposure risk owing to the composition and configuration of urban landscape elements. Regarding the spatial features and planning context, this study suggests four types of pedestrian networks to provide urban authorities with useful practical information in city-wide urban plans for enhancing walkability: PM2.5 reduction required; PM2.5 reduction recommended; optimal areas; and alternatives of optimal areas.

Funder

National Institute of Forest Science

Publisher

MDPI AG

Subject

Nature and Landscape Conservation,Ecology,Global and Planetary Change

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3