A Comparison of Frequency-Dependent Soil Models: Electromagnetic Transient Analysis of Overhead Transmission Lines Using Modal Decomposition

Author:

Garbelim Pascoalato Tainá FernandaORCID,Justo de Araújo Anderson RicardoORCID,Leon Colqui Jaimis SajidORCID,Kurokawa SérgioORCID,Pissolato Filho JoséORCID

Abstract

This article investigates the influence of four causal frequency-dependent (FD) soil models and their impact on the responses of a multiphase overhead transmission line (OHTL) with ground wires, generated by a lightning strike. The FD models proposed by Longmire-Smith (LS), Messier (M), Portela (P) and Alípio-Visacro (AV) are considered. The ground-return impedance and admittance matrices are computed with the Nagakawa approach for both frequency-constant and FD soil models. The frequency-domain modal voltages and time-domain transient voltages are assessed in this work. Modal decomposition technique is used to study the attenuation constant, propagation velocity and voltages for each propagation mode. Simulations are carried out in a frequency range of 100 Hz to 10 MHz, for OHTLs with lengths of 1 and 10 km, on soils of 700 and 4000 Ω·m. Simulation results demonstrated that the Portela (P) model has resulted in more significant variation in the ground-return impedance and admittance, constant attenuation and propagation velocity in which a pronounced variation, especially at the high frequencies, is seen. On the other hand, Longmire-Smith (LS) and Messier (M) have produced similar results in both frequency and time domains. Additionally, the Alípio-Visacro (AV) model has produced intermediate responses, being the model recommended by CIGRÈ WG C4.33. Time-domain induced voltage waveforms obtained with the Portela (P) model has shown pronounced differences, especially at the peak values, for the high-resistive soil. This study demonstrates the importance of considering the FD soil models to assess the transient responses adequately, especially when OHTLs are on high-resistive soils.

Funder

São Paulo Research Foundation

Coordenação de Aperfeicoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3