Mechanism Design for Efficient Offline and Online Allocation of Electric Vehicles to Charging Stations

Author:

Rigas Emmanouil S.ORCID,Gerding Enrico H.,Stein Sebastian,Ramchurn Sarvapali D.,Bassiliades NickORCID

Abstract

The industry related to electric vehicles (EVs) has seen a substantial increase in recent years, as such vehicles have the ability to significantly reduce total CO2 emissions and the related global warming effect. In this paper, we focus on the problem of allocating EVs to charging stations, scheduling and pricing their charging. Specifically, we developed a Mixed Integer Program (MIP) which executes offline and optimally allocates EVs to charging stations. On top, we propose two alternative mechanisms to price the electricity the EVs charge. The first mechanism is a typical fixed-price one, while the second is a variation of the Vickrey–Clark–Groves (VCG) mechanism. We also developed online solutions that incrementally call the MIP-based algorithm and solve it for branches of EVs. In all cases, the EVs’ aim is to minimize the price to pay and the impact on their driving schedule, acting as self-interested agents. We conducted a thorough empirical evaluation of our mechanisms and we observed that they had satisfactory scalability. Additionally, the VCG mechanism achieved an up to 2.2% improvement in terms of the number of vehicles that were charged compared to the fixed-price one and, in cases where the stations were congested, it calculated higher prices for the EVs and provided a higher profit for the stations, but lower utility to the EVs. However, in a theoretical evaluation, we proved that the variant of the VCG mechanism being proposed in this paper still guaranteed truthful reporting of the EVs’ preferences. In contrast, the fixed-price one was found to be vulnerable to agents’ strategic behavior as non-truthful EVs can charge instead of truthful ones. Finally, we observed the online algorithms to be, on average, at 95.6% of the offline ones in terms of the average number of serviced EVs.

Funder

State Scholarships Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3