Vibration Response Analysis of Hydraulic Support Based on Real Shape Coal Gangue Particles

Author:

Wan Lirong,Wang JiantaoORCID,Ma DejianORCID,Zeng Qingliang,Li Zhaoji,Zhu Yanpeng

Abstract

Top coal caving is an important way of thick coal seam mining. The current coal gangue identification technology is not mature, resulting in a low degree of automation of coal caving. The current numerical simulation pays little attention to the real shape of rocks. This paper aims to reveal the vibration response of the tail beam under the action of real shape coal gangue particles. First, the real shape rock and hydraulic support model are established, and the relationship between the Rock Mixed Ratio (RMR) and the vibration signal characteristics during the impact process are studied. The influence of falling velocity and coal strength on this relationship are analyzed. Finally, the influence of motion mode on this relationship is analyzed and discussed. The numerical results show that the increase of the RMR can significantly enhance the velocity and acceleration signals of the tail beam, and the signals caused by different RMR are still different under different velocities and strengths. The best recognition effect can be obtained when the coal gangue particles slip on the hydraulic support, and the effect is the the worst when the coal gangue particles impact upon and roll on the hydraulic support. The conclusion provides directions for further study of coal gangue identification based on vibration.

Funder

Key Research and Development of Shandong Province Exploration and Mining of Deep Resources

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3