Bacteriolytic Potential of Enterococcus Phage iF6 Isolated from “Sextaphag®” Therapeutic Phage Cocktail and Properties of Its Endolysins, Gp82 and Gp84

Author:

Buzikov Rustam M.1,Kazantseva Olesya A.1ORCID,Piligrimova Emma G.1ORCID,Ryabova Natalya A.12,Shadrin Andrey M.1ORCID

Affiliation:

1. Laboratory of Bacteriophage Biology, G. K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Federal Research Center, 142290 Pushchino, Russia

2. Institute of Protein Research RAS, 142290 Pushchino, Russia

Abstract

The number of infections caused by antibiotic-resistant strains of bacteria is growing by the year. The pathogenic bacterial species Enterococcus faecalis and Enterococcus faecium are among the high priority candidate targets for the development of new therapeutic antibacterial agents. One of the most promising antibacterial agents are bacteriophages. According to the WHO, two phage-based therapeutic cocktails and two medical drugs based on phage endolysins are currently undergoing clinical trials. In this paper, we describe the virulent bacteriophage iF6 and the properties of two of its endolysins. The chromosome of the iF6 phage is 156,592 bp long and contains two direct terminal repeats, each 2108 bp long. Phylogenetically, iF6 belongs to the Schiekvirus genus, whose representatives are described as phages with a high therapeutic potential. The phage demonstrated a high adsorption rate; about 90% of iF6 virions attached to the host cells within one minute after the phage was added. Two iF6 endolysins were able to lyse enterococci cultures in both logarithmic and stationary growth phases. Especially promising is the HU-Gp84 endolysin; it was active against 77% of enterococci strains tested and remained active even after 1 h incubation at 60 °C. Thus, iF6-like enterococci phages appear to be a promising platform for the selection and development of new candidates for phage therapy.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

Reference54 articles.

1. Global Burden of Bacterial Antimicrobial Resistance in 2019: A Systematic Analysis;Murray;Lancet,2022

2. (2021). Geneva: World Health Organization 2020 Antibacterial Agents in Clinical and Preclinical Development: An Overview and Analysis, World Health Organization.

3. Occurrence of Virulence-Associated Genes in Clinical Enterococcus Faecalis Strains Isolated in Londrina, Brazil;Suzart;J. Med. Microbiol.,2004

4. A Series of Enterococcal Brain Abscesses;Maiti;J. Neurosci. Rural. Pract.,2015

5. Enterococcal Infections & Antimicrobial Resistance;Sood;Indian J. Med. Res.,2008

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3