Contextualized Small Target Detection Network for Small Target Goat Face Detection

Author:

Wang Yaxin1,Han Ding12,Wang Liang13ORCID,Guo Ying4,Du Hongwei1

Affiliation:

1. College of Electronic Information Engineering, Inner Mongolia University, Hohhot 010020, China

2. State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, Hohhot 010020, China

3. Department of Electronic Engineering, College of Information Science and Engineering, Fudan University, Shanghai 200438, China

4. College of Information Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China

Abstract

With the advancement of deep learning technology, the importance of utilizing deep learning for livestock management is becoming increasingly evident. goat face detection provides a foundation for goat recognition and management. In this study, we proposed a novel neural network specifically designed for goat face object detection, addressing challenges such as low image resolution, small goat face targets, and indistinct features. By incorporating contextual information and feature-fusion complementation, our approach was compared with existing object detection networks using evaluation metrics such as F1-Score (F1), precision (P), recall (R), and average precision (AP). Our results show that there are 8.07%, 0.06, and 6.8% improvements in AP, P, and R, respectively. The findings confirm that the proposed object detection network effectively mitigates the impact of small targets in goat face detection, providing a solid basis for the development of intelligent management systems for modern livestock farms.

Funder

National Key R&D Program of China

Major Science and Technology Project of Inner Mongolia Autonomous Region

Scientific Research Project of Higher Education Institutions in Inner Mongolia Autonomous Region

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3