Soil Detachment Rate of a Rainfall-Induced Landslide Soil

Author:

Batumalai Pavithran1ORCID,Mohd Nazer Nor Shahidah1ORCID,Simon Norbert1,Sulaiman Norasiah1,Umor Mohd Rozi1,Ghazali Mohamad Anuri1

Affiliation:

1. Center for Earth Sciences and Environment, Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia

Abstract

In recent decades, the number of rainfall-induced landslides has increased significantly in many parts of Malaysia, especially in the urbanized and hilly areas. The disturbance of hilly morphology as a result of human activities has increased the potential for erosion on man-made slopes, especially during extreme rainfall during rain events. Most hilly areas in Malaysia are covered by a thick layer of soil, which is known to have a significant impact on soil erosion. However, little is known about how soil erosion and rainfall could be the driving force behind landslide initiation, especially on stabilized slopes. Therefore, this study focuses on the soil detachment rate of landslides triggered by rainfall at different rainfall intensities. A sandbox model is used to represent real slope conditions. The relationship between the soil detachment capacity, soil properties (water content, slope, clay layers and soil compaction), hydraulic parameters (flow shear stress and stream power) and rainfall intensities (low, medium and high) was investigated. The results showed that the hydraulic parameters and the rainfall intensity are directly proportional to the detachment rate of the soil. Water content and slope show a higher soil detachment rate and a lower critical flow shear stress than other soil properties. It can be concluded that high saturation and steep slope increase the risk of soil erosion because the cohesion and friction of the soil are significantly reduced, leading to a weakening of the soil structure at the surface. The results of this study can feed into the existing analysis of slope stability and formulate the onset of a landslide triggered by rainfall, especially in eroded soils.

Funder

Ministry of Higher Education (MOHE), Malaysia

Universiti Kebangsaan Malaysia

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3