Evaluation and Prediction of Water Quality of Typical Wetlands in the Source Region of the Yangtze River

Author:

Lu Sujin1ORCID,Li Jianming1,Si Jianhua2,Miao Yan3,Qi Xuejiao1,Zhang Xiuzhi2,Bao Wenjin2,Zhang Xiaoyan1,Zhou Shipeng1,Jin Cheng1,Qi Lijuan1,Qi Yue1,Zheng Xiaojing1,Gong Yanhong1,Wang Zhanqing1,Wang Yujing1,Yi Bingyu1,Qi Huiming1

Affiliation:

1. Eco-Environmental Engineering College, Qinghai University, Xining 810016, China

2. College of Agriculture and Animal Husbandry, Qinghai University, Xining 810016, China

3. Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China

Abstract

Wetlands play an important role in water storage and water conservation, but with global climate change, the degradation of wetland ecosystems is accelerating. In this study, we conducted research on the current situation and future prediction of water quality in typical wetlands in the source region of the Yangtze River to provide a scientific basis for the protection and restoration of wetlands in the source region of the Yangtze River. The Bayesian water quality assessment method and Yao Zhiqi evaluation method were used to evaluate the water quality of typical wetlands in the source region of the Yangtze River from 2016 to 2021 and based on the climate change scenarios of three RCPs (Representative Concentration Pathways) under the CMIP5 (Coupled Model Intercomparison Project Phase 5) global climate model and SWAT (soil and water assessment tool) hydrological model, the wetland water quality in the source region of the Yangtze River from 2022 to 2100 was predicted. The results show that the inter-annual changes in CODMn, NH3-N, and TN in a typical wetland show a downward trend, while the temperature and DO concentration show an upward trend from 2016–2021. The changes in CODMn, temperature, and conductivity within the year are abundant season > flat season > dry season; and DO, NH3-A, TN, and TP concentrations within the year are opposite. The water quality of typical wetlands in the source region of the Yangtze River has reached Class II and above. From 2022 to 2100, under climate change in the future, TN, TP, CODMn, NH3-N, and temperature in the wetland water in the source region of the Yangtze River will continue to rise, and the concentration of DO will continue to decline. Therefore, the pressure on water resources in the source region of the Yangtze River is further aggravated, so it is urgent to strengthen water resources protection.

Funder

National Natural Science Funds Fund

project of the Qing Hai Science & Technology Department

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3