Optimal LiDAR Data Resolution Analysis for Object Classification

Author:

Darrah MarjorieORCID,Richardson Matthew,DeRoos Bradley,Wathen Mitchell

Abstract

When classifying objects in 3D LiDAR data, it is important to use efficient collection methods and processing algorithms. This paper considers the resolution needed to classify 3D objects accurately and discusses how this resolution is accomplished for the RedTail RTL-450 LiDAR System. We employ VoxNet, a convolutional neural network, to classify the 3D data and test the accuracy using different data resolution levels. The results show that for our data set, if the neural network is trained using higher resolution data, then the accuracy of the classification is above 97%, even for the very sparse testing set (10% of original test data set point density). When the training is done on lower resolution data sets, the classification accuracy remains good but drops off at around 3% of the original test data set point density. These results have implications for determining flight altitude and speed for an unmanned aerial vehicle (UAV) to achieve high accuracy classification. The findings point to the value of high-resolution point clouds for both the training of the convolutional neural network and in data collected from a LiDAR sensor.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference17 articles.

1. 3D object recognition based on volumetric representation using convolutional neural networks;Xu,2016

2. Learning to Look at LiDAR: The Use of R-CNN in the Automated Detection of Archaeological Objects in LiDAR Data from the Netherlands

3. A Convolutional Learning System for Object Classification in 3-D Lidar Data

4. PointNet: Deep learning on point sets for 3D classification and segmentation;Qi;Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2017

5. Classification of objects in the LIDAR point clouds using Deep Neural Networks based on the PointNet model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3