Photoplethysmogram Recording Length: Defining Minimal Length Requirement from Dynamical Characteristics

Author:

Sviridova NinaORCID,Zhao TiejunORCID,Nakano Akimasa,Ikeguchi TohruORCID

Abstract

Photoplethysmography is a widely used technique to noninvasively assess heart rate, blood pressure, and oxygen saturation. This technique has considerable potential for further applications—for example, in the field of physiological and mental health monitoring. However, advanced applications of photoplethysmography have been hampered by the lack of accurate and reliable methods to analyze the characteristics of the complex nonlinear dynamics of photoplethysmograms. Methods of nonlinear time series analysis may be used to estimate the dynamical characteristics of the photoplethysmogram, but they are highly influenced by the length of the time series, which is often limited in practical photoplethysmography applications. The aim of this study was to evaluate the error in the estimation of the dynamical characteristics of the photoplethysmogram associated with the limited length of the time series. The dynamical properties were evaluated using recurrence quantification analysis, and the estimation error was computed as a function of the length of the time series. Results demonstrated that properties such as determinism and entropy can be estimated with an error lower than 1% even for short photoplethysmogram recordings. Additionally, the lower limit for the time series length to estimate the average prediction time was computed.

Funder

Japan Society for the Promotion of Science

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference56 articles.

1. Cardiovascular Diseases (CVDs) https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds)

2. Photoplethysmography and its application in clinical physiological measurement

3. PPG Signal Analysis: An Introduction Using MATLAB;Elgendi,2020

4. Introduction to Photoplethysmography;Kyriacou,2022

5. Current progress of photoplethysmography and SPO2 for health monitoring

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3