Abstract
The fast, reliable, and accurate identification of IDPRs is essential, as in recent years it has come to be recognized more and more that IDPRs have a wide impact on many important physiological processes, such as molecular recognition and molecular assembly, the regulation of transcription and translation, protein phosphorylation, cellular signal transduction, etc. For the sake of cost-effectiveness, it is imperative to develop computational approaches for identifying IDPRs. In this study, a deep neural structure where a variant VGG19 is situated between two MLP networks is developed for identifying IDPRs. Furthermore, for the first time, three novel sequence features—i.e., persistent entropy and the probabilities associated with two and three consecutive amino acids of the protein sequence—are introduced for identifying IDPRs. The simulation results show that our neural structure either performs considerably better than other known methods or, when relying on a much smaller training set, attains a similar performance. Our deep neural structure, which exploits the VGG19 structure, is effective for identifying IDPRs. Furthermore, three novel sequence features—i.e., the persistent entropy and the probabilities associated with two and three consecutive amino acids of the protein sequence—could be used as valuable sequence features in the further development of identifying IDPRs.
Subject
Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Enhancing Intrinsically Disordered Region Identification in Proteins: A BERT-Based Deep Learning Approach;2023 International Conference on Artificial Intelligence for Innovations in Healthcare Industries (ICAIIHI);2023-12-29