Microvasculopathy-Related Hemorrhagic Tissue Deposition of Iron May Contribute to Fibrosis in Systemic Sclerosis: Hypothesis-Generating Insights from the Literature and Preliminary Findings

Author:

Sfikakis Petros P.,Vlachogiannis Nikolaos I.ORCID,Ntouros Panagiotis A.,Mavrogeni Sophie,Maris Thomas G.,Karantanas Apostolos H.ORCID,Souliotis Vassilis L.ORCID

Abstract

Microvascular wall abnormalities demonstrated by nailfold capillaroscopy in systemic sclerosis (SSc) may result in microhemorrhagic deposition of erythrocyte-derived iron. Such abnormalities precede fibrosis, which is orchestrated by myofibroblasts. Iron induces endothelial-to-mesenchymal transition in vitro, which is reversed by reactive oxygen species (ROS) scavengers. The conversion of quiescent fibroblasts into profibrotic myofibroblasts has also been associated with ROS-mediated activation of TGF-β1. Given that iron overload predisposes to ROS formation, we hypothesized that the uptake of erythrocyte-derived iron by resident cells promotes fibrosis. Firstly, we show that iron induces oxidative stress in skin-derived and synovial fibroblasts in vitro, as well as in blood mononuclear cells ex vivo. The biological relevance of increased oxidative stress was confirmed by showing the concomitant induction of DNA damage in these cell types. Similar results were obtained in vivo, following intravenous iron administration. Secondly, using magnetic resonance imaging we show an increased iron deposition in the fingers of a patient with early SSc and nailfold microhemorrhages. While a systematic magnetic resonance study to examine tissue iron levels in SSc, including internal organs, is underway, herein we propose that iron may be a pathogenetic link between microvasculopathy and fibrosis and an additional mechanism responsible for increased oxidative stress in SSc.

Funder

ELKE-NKUA

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3