Comparison of Auxenochlorella protothecoides and Chlorella spp. Chloroplast Genomes: Evidence for Endosymbiosis and Horizontal Virus-like Gene Transfer

Author:

Park Sang-Hyuck,Kyndt John A.ORCID,Brown Judith K.ORCID

Abstract

Resequencing of the chloroplast genome (cpDNA) of Auxenochlorella protothecoides UTEX 25 was completed (GenBank Accession no. KC631634.1), revealing a genome size of 84,576 base pairs and 30.8% GC content, consistent with features reported for the previously sequenced A. protothecoides 0710, (GenBank Accession no. KC843975). The A. protothecoides UTEX 25 cpDNA encoded 78 predicted open reading frames, 32 tRNAs, and 4 rRNAs, making it smaller and more compact than the cpDNA genome of C. variabilis (124,579 bp) and C. vulgaris (150,613 bp). By comparison, the compact genome size of A. protothecoides was attributable primarily to a lower intergenic sequence content. The cpDNA coding regions of all known Chlorella species were found to be organized in conserved colinear blocks, with some rearrangements. The Auxenochlorella and Chlorella species genome structure and composition were similar, and of particular interest were genes influencing photosynthetic efficiency, i.e., chlorophyll synthesis and photosystem subunit I and II genes, consistent with other biofuel species of interest. Phylogenetic analysis revealed that Prototheca cutis is the closest known A. protothecoides relative, followed by members of the genus Chlorella. The cpDNA of A. protothecoides encodes 37 genes that are highly homologous to representative cyanobacteria species, including rrn16, rrn23, and psbA, corroborating a well-recognized symbiosis. Several putative coding regions were identified that shared high nucleotide sequence identity with virus-like sequences, suggestive of horizontal gene transfer. Despite these predictions, no corresponding transcripts were obtained by RT-PCR amplification, indicating they are unlikely to be expressed in the extant lineage.

Funder

United States Department of Energy

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3