Induction of Systemic Resistance against Sheath Blight in Rice by Different Pseudomonas Isolates

Author:

Elsharkawy Mohsen1ORCID,Sakran Raghda2ORCID,Ahmad Abdelmonim3ORCID,Behiry Said4ORCID,Abdelkhalek Ahmed5ORCID,Hassan Mohamed6ORCID,Khedr Amr1

Affiliation:

1. Agricultural Botany Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt

2. Rice Research Department, Field Crop Research Institute, Agricultural Research Center, Giza 12619, Egypt

3. Department of Plant Pathology, Faculty of Agriculture, Minia University, El-Minia 61519, Egypt

4. Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, Alexandria 21531, Egypt

5. Plant Protection and Biomolecular Diagnosis Department, ALCRI, City of Scientific Research and Technological Applications, New Borg El Arab City 21934, Egypt

6. Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia

Abstract

Sheath blight disease is a fungal pathogen that causes leaf blight in rice plants, resulting in significant yield losses throughout the growing season. Pseudomonas spp. have long been used as biocontrol agents for a variety of plant diseases. Four Pseudomonas isolates were tested for their ability to promote rice growth and generate systemic resistance to Rhizoctonia solani, the causal pathogen of sheath blight disease. In vitro, Pseudomonas isolates produced the growth hormone indole acetic acid (0.82–1.82 mg L−1). Additionally, seed treatment with Pseudomonas putida suspension outperformed P. brassicacearum, P. aeruginosa and P. resinovorans in terms of germination and vigor evaluation. The maximum seed germination of 89% was recorded after seed treatments with a fresh suspension of P. putida, followed by 87% germination in P. aeruginosa treatment, compared with only 74% germination in the untreated controls. When compared with the infected control plants, all Pseudomonas isolates were non-pathogenic to rice and their co-inoculation considerably enhanced plant growth and health by reducing the disease index to 37% and improving plant height (26%), fresh weight (140%) and dry weight (100%). All Pseudomonas isolates effectively reduced sheath blight disease incidence, as well as the fungicide carbendazim, which is recommended for field management of R. solani. In comparison to untreated control seedlings, treatment with Pseudomonas isolates enhanced the production of peroxidase and polyphenol oxidase enzymes and the expression of the phenylalanine ammonia lyase (PAL) and NPR1 genes, which could be involved in disease incidence reduction. In conclusion, the use of Pseudomonas spp. has been demonstrated to improve rice growth and resistance to R. solani while also providing an environmentally acceptable option to the agroecosystems.

Publisher

MDPI AG

Subject

Paleontology,Space and Planetary Science,General Biochemistry, Genetics and Molecular Biology,Ecology, Evolution, Behavior and Systematics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3