Affiliation:
1. Department of Information Engineering, Università Politecnica delle Marche, 60131 Ancona, Italy
Abstract
The actuator fault-tolerant control problem for a variable-pitch quadrotor is addressed under uncertain conditions. Following a model-based approach, the plant nonlinear dynamics are faced with a disturbance observer-based control and a sequential quadratic programming control allocation, where only kinematic data of the onboard inertial measurement unit are required for the fault-tolerant control, i.e., it does not require the measurement of the motor speed nor the current drawn by the actuators. In the case of almost horizontal wind, a single observer handles both faults and the external disturbance. The estimation of the wind is fed forward by the controller, while the actuator fault estimation is exploited in the control allocation layer, which copes with the variable-pitch nonlinear dynamics, thrust saturation, and rate limits. Numerical simulations in the presence of measurement noise show the capability of the scheme to handle multiple actuator faults in a windy environment.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献