SPT: Single Pedestrian Tracking Framework with Re-Identification-Based Learning Using the Siamese Model

Author:

Manzoor Sumaira1ORCID,An Ye-Chan2ORCID,In Gun-Gyo2ORCID,Zhang Yueyuan2,Kim Sangmin2ORCID,Kuc Tae-Yong2ORCID

Affiliation:

1. Creative Algorithms and Sensor Evolution Laboratory, Suwon 16419, Republic of Korea

2. Department of Electrical and Computer Engineering, College of Information and Communication Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea

Abstract

Pedestrian tracking is a challenging task in the area of visual object tracking research and it is a vital component of various vision-based applications such as surveillance systems, human-following robots, and autonomous vehicles. In this paper, we proposed a single pedestrian tracking (SPT) framework for identifying each instance of a person across all video frames through a tracking-by-detection paradigm that combines deep learning and metric learning-based approaches. The SPT framework comprises three main modules: detection, re-identification, and tracking. Our contribution is a significant improvement in the results by designing two compact metric learning-based models using Siamese architecture in the pedestrian re-identification module and combining one of the most robust re-identification models for data associated with the pedestrian detector in the tracking module. We carried out several analyses to evaluate the performance of our SPT framework for single pedestrian tracking in the videos. The results of the re-identification module validate that our two proposed re-identification models surpass existing state-of-the-art models with increased accuracies of 79.2% and 83.9% on the large dataset and 92% and 96% on the small dataset. Moreover, the proposed SPT tracker, along with six state-of-the-art (SOTA) tracking models, has been tested on various indoor and outdoor video sequences. A qualitative analysis considering six major environmental factors verifies the effectiveness of our SPT tracker under illumination changes, appearance variations due to pose changes, changes in target position, and partial occlusions. In addition, quantitative analysis based on experimental results also demonstrates that our proposed SPT tracker outperforms the GOTURN, CSRT, KCF, and SiamFC trackers with a success rate of 79.7% while beating the DiamSiamRPN, SiamFC, CSRT, GOTURN, and SiamMask trackers with an average of 18 tracking frames per second.

Funder

Korea Evaluation Institute of Industrial Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Edge Deployment of Vision-Based Model for Human Following Robot;2023 23rd International Conference on Control, Automation and Systems (ICCAS);2023-10-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3