Toward Sensor Measurement Reliability in Blockchains

Author:

Gómez-Marín Ernesto12ORCID,Parrilla Luis2ORCID,Tejero López Jose L.2ORCID,Morales Diego P.2ORCID,Castillo Encarnación2ORCID

Affiliation:

1. Infineon Technologies AG, 85579 Neubiberg, Germany

2. Departamento de Electrónica y Tecnología de Computadores, Universidad de Granada, 18071 Granada, Spain

Abstract

In this work, a secure architecture to send data from an Internet of Things (IoT) device to a blockchain-based supply chain is presented. As is well known, blockchains can process critical information with high security, but the authenticity and accuracy of the stored and processed information depend primarily on the reliability of the information sources. When this information requires acquisition from uncontrolled environments, as is the normal situation in the real world, it may be, intentionally or unintentionally, erroneous. The entities that provide this external information, called Oracles, are critical to guarantee the quality and veracity of the information generated by them, thus affecting the subsequent blockchain-based applications. In the case of IoT devices, there are no effective single solutions in the literature for achieving a secure implementation of an Oracle that is capable of sending data generated by a sensor to a blockchain. In order to fill this gap, in this paper, we present a holistic solution that enables blockchains to verify a set of security requirements in order to accept information from an IoT Oracle. The proposed solution uses Hardware Security Modules (HSMs) to address the security requirements of integrity and device trustworthiness, as well as a novel Public Key Infrastructure (PKI) based on a blockchain for authenticity, traceability, and data freshness. The solution is then implemented on Ethereum and evaluated regarding the fulfillment of the security requirements and time response. The final design has some flexibility limitations that will be approached in future work.

Funder

European Union

European Union’s Horizon 2020 Research and Innovation program

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3