Electrogastrogram-Derived Features for Automated Sickness Detection in Driving Simulator

Author:

Jakus GregaORCID,Sodnik JakaORCID,Miljković NadicaORCID

Abstract

The rapid development of driving simulators for the evaluation of automated driving experience is constrained by the simulator sickness-related nausea. The electrogastrogram (EGG)-based approach may be promising for immediate, objective, and quantitative nausea assessment. Given the relatively high EGG sensitivity to noises associated with the relatively low amplitude and frequency spans, we introduce an automated procedure comprising statistical analysis and machine learning techniques for EGG-based nausea detection in relation to the noise contamination during automated driving simulation. We calculate the root mean square of EGG amplitude, median and dominant frequencies, magnitude of Power Spectral Density (PSD) at dominant frequency, crest factor of PSD, and spectral variation distribution along with newly introduced parameters: sample and spectral entropy, autocorrelation zero-crossing, and parameters derived from the Poincaré diagram of consecutive EGG samples. Results showed outstanding robustness of sample entropy with moderate robustness of autocorrelation zero-crossing, dominant frequency, and its median. Machine learning reached an accuracy of 88.2% and revealed sample entropy as one of the most relevant and robust parameters, while linear analysis highlighted spectral entropy, spectral variation distribution, and crest factor of PSD. This study clearly indicates the need for customized feature selection in noisy environments, as well as a complementary approach comprising machine learning and statistical analysis for efficient nausea detection.

Funder

HADRIAN (Holistic Approach for Driver Role Integration and Automation Allocation for European Mobility Needs) EU Horizon 2020 project

Slovenian Research Agency within the research program ICT4QoL–Information and Communications Technologies for Quality of Life

Ministry of Education, Science, and Technological Development, Republic of Serbia

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Classification of Lying Postures;2023 31st Telecommunications Forum (TELFOR);2023-11-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3